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ABSTRACT

Cloud segmentation from intensity images is a pivotal task in atmospheric science
and computer vision, aiding weather forecasting and climate analysis. Ground-
based sky/cloud segmentation extracts clouds from images for further feature anal-
ysis. Existing methods struggle to balance segmentation accuracy and computa-
tional efficiency, limiting real-world deployment on edge devices, so we intro-
duce SCANet, a novel lightweight cloud segmentation model featuring Segrega-
tion and Context Aggregation Module (SCAM), which refines rough segmentation
maps into weighted sky and cloud features processed separately. SCANet achieves
state-of-the-art performance while drastically reducing computational complexity.
SCANet-large (4.29M) achieves comparable accuracy to state-of-the-art methods
with 70.9% fewer parameters. Meanwhile, SCANet-lite (90K) delivers 1390 fps
in FP16, surpassing real-time standards. Additionally, we propose an efficient pre-
training strategy that enhances performance even without ImageNet pre-training.

Keywords: cloud segmentation, machine learning, segregation and context aggregation module.

1 INTRODUCTION

Understanding cloud-sky relationships is crucial for climate modeling, solar energy forecasting, and
extreme weather prediction. Advances in computer vision and machine learning have improved
meteorology estimation (15 2; 3) and weather prediction (4; (5 |6), offering insights into cloud status.
While satellites provide valuable cloud data, they are costly and storage-intensive. Ground-based
sky/cloud segmentation (7} 18; 9)), supported by datasets like SWIMSEG (10), SWINSEG (11), and
SWINySEG (12), offers a cost-effective, high-resolution alternative, enhancing climate applications.

Sky/cloud segmentation, a binary semantic task, has evolved with fully convolutional networks
(FCN) (13). Real-time segmentation strategies include (a) lightweight backbones and decoders,
e.g., DeepLab (14}[15)), and (b) encoder-decoder architectures like ICNet (16) and BiseNet (175 [18]).
However, existing methods either lose information due to attention mechanisms or suffer from slow
inference, limiting real-time applications. A detailed discussion of related works, including their
limitations, can be found in Appendix [A.T] further motivating the design of SCANet.

To address these challenges, we propose SCANet, a lightweight yet effective model integrating
MobileNetV2 (19) and EfficientNet-BO (20) with a Segregation and Context Aggregation module
(SCAM). SCANet, following a U-Net (21)) structure, refines cloud-sky features via SCAM decoders.
Unlike prior methods, SCAM enhances feature separation and aggregation, while supervision at the
last three stages accelerates convergence.

By improving segmentation accuracy and efficiency, SCANet supports climate modeling, renewable
energy forecasting, and extreme weather monitoring, demonstrating a direct pathway from machine
learning to climate impact. Further details on SCANet’s contributions to climate change mitigation
and adaptation are discussed in Appendix The main contributions of our SCANet are twofold:

* SCANet, a lightweight CNN-based model, achieves state-of-the-art performance with
70.68% fewer parameters while exceeding real-time standards, incorporating a new pre-
training strategy for sky/cloud segmentation when ImageNet pre-training is unavailable.

* A novel SCAM decoder with segregated branches for information processing, enabling
precise segmentation while maintaining real-time efficiency.
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Figure 1: #Params vs. SWINySEG
Accuracy. Our proposed SCANet
model successfully achieves a bal- Figure 2: The overall architecture of SCANet and SCAM.
ance between the model size and ac- (a) presents the pipeline of SCANet; (b) details the de-
curacy. SCANet-large can achieve sign of SCAM; (c) depicts the decoder structure preceding
97.0% of accuracy in SWINySEG the SCAM modules. Additionally, The architecture of in-
with 4.29 million parameters, while verted residual block (19) is demonstrated in Fig. E]in Ap-
SCANet-lite can achieve 94.4% of  pendix[A.6] The Up-sample block consists of an inverted
accuracy with only 90k parameters. residual block paired with a bilinear Up-sample layer.

2 SCANET

Our SCANet is designed based on the U-Net (21)) structure. We use different backbone networks to
extract high-dimensional features in our experiments. The architecture of SCANet is shown in Fig. 2]
(a). We equip our SCANet with MobileNetV2 (19) and EfficientNet-B0 (20) for different settings.
We also propose SWINySEG pre-training (SWPT) for SCANet-lite, demonstrated in Appendix[A.3]

2.1 SEGREGATION AND CONTEXT AGGREGATION MODULE (SCAM)

The Segregation and Context Aggregation Module (SCAM) is a lightweight decoder for sky/cloud
segmentation, as shown in Fig. 2] (b), operating in the 2nd, 3rd, and 4th stages. Given the bi-
nary nature of sky/cloud segmentation, SCAM processes these categories separately by first seg-
regating features based on rough segmentation results from the previous stage and then aggre-
gating them. It takes two inputs: a concatenation of the U-Net shortcut and feature maps from
the previous layer, ¢;—1, and the segmentation prediction from the prior stage, s;—;. The main
branch is formulated as f; = Cat(Conv(c;—1),Conv(c;—1 X s;-1)), where f; represents fore-
ground (sky) features, and Cat denotes channel-wise concatenation. The background mask is com-
puted as m; = Sigmoid(Conv(c;—1 x (1 — s;,-1))). To extract background features, we apply
the background mask to the core branch, formulated as b; = f; X m;, improving background
representation. Finally, element-wise addition aggregates f; and b;, producing the output o; as
0; = Conv(UpSample(Conv(b;) + Conv(f;))), while the stage prediction is obtained through a
convolutional layer followed by a sigmoid activation: s; = Sigmoid(Conv(o;)).

2.2 LoSSs FUNCTIONS

In our research, We use binary cross entropy (BCE) and Intersection of Union (IOU) loss as the loss
function in the training of SCANet. These loss functions can be defined as follows:

N
Loeelpry) = - * D05 *logp; + (1~ ) #log (1)) M

j=1
ﬁiou(p,y):lfli( YixPi ) o)

ne Y TP Y X P
then our total training loss under deelz supervision can be formulated as:
Lp.y) =D i # (Loee(Pir yi) + Lion(pis i) 3)
i=1



Under review as a workshop paper at "Tackling Climate Change with Machine Learning", ICLR
2025

in which «; represents the coefficient of 7 th SCAM or decoder.

s
B

!’\.
‘ .

HxaRRA A

Image SCANet-large CloudSegNet UNet PSPNet DeeplabV3p  CloudUNet CloudUNetV2

Figure 3: Qualitative comparison of SCANet-large with state-of-the-art approaches on day-time
(rows 1-2) and night-time (rows 3—4) images from the SWINySEG dataset.

3 EXPERIMENTS & RESULTS

We conduct experiments on Singapore Whole Sky Nychthemeron Image SEGmentation Database
(SWINySEG), see Appendix [A.4]for details. Our experiment setting is described in Appendix[A.3]

3.1 METRICS

In our experiments, we evaluate SCANet using six widely used metrics: accuracy, precision, recall,
F-score, error rate, and MIoU. The F-score, which reflects overall model performance, is the har-

monic mean of precision and recall, given by %‘m Precision is defined as TPTEFP,

recall as TPT_‘_PFN, and error rate as FEIEN. Besides, MIoU, a common metric is calculated as
__ miouy +miou_ TP _
MIoU = —————, where miou} = sxrFprp and miou_ = 7TN TFNTFp lespectively.

3.2 QUALITATIVE EVALUATION

The qualitative comparison of SCANet-large with six prior methods (1252251235 215245 25)) is shown
in Fig.[3] The leftmost columns present source images and ground truths, with day-time samples
in the first two rows and night-time images in the last two. Cloud-sky boundaries in the first row
challenge prior methods—CloudSegNet misclassifies sky as cloud, while others miss small patches.
SCANet-large, however, accurately segments both. In the second row, it correctly classifies three
small sky patches, unlike previous models that confuse sky and cloud. Night-time segmentation is
even harder due to limited training data. In the first night-time row, complex cloud structures degrade
prior methods’ performance, but SCANet-large remains accurate, highlighting its advantages in
atmospheric science applications. Additional comparisons are provided in Fig. [§]in Appendix

3.3 QUANTITATIVE EVALUATION

Table [I] presents the quantitative evaluation of SCANet on day-time, night-time, and day-+night
time SWINyYSEG datasets, comparing it with state-of-the-art methods. We reference Zhang et
al. (29) for prior results and ensure a fair comparison by maintaining the same settings. SCANet-
large achieves the highest accuracy (0.970) and precision (0.971), outperforming 8 prior methods,
including MA-SegCloud (0.969 accuracy, 0.970 precision), despite having only 4.29 million pa-
rameters—a 70.68% reduction compared to MA-SegCloud (14.63 million). The standard SCANet
achieves competitive accuracy (0.960) and MIoU (0.900), while SCANet-lite, with just 0.09 million
parameters, attains 0.945 accuracy, surpassing larger models like SegCloud (19.61 million param-
eters, 0.942 accuracy). These results demonstrate SCANet’s efficiency and performance balance,
with SCANet-large achieving state-of-the-art accuracy and precision using much fewer parameters.
Precision-Recall (PR) curves in Fig.[/|in Appendix illustrate all methods’ overall performance.
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Table 1: Comparison with other state-of-the-art methods on day time, night time, and day+night
time images. We highlight the optimal and suboptimal methods in bold and underline, respectively.
"-" indicates that the corresponding metric was not reported in the original paper.

Methods #Params ‘ Day-time ‘ Night-time ‘ Day+Night time
‘ Acc.  Prec. Rec. Fl1 MlIoU ‘ Acc.  Prec. Rec. Fl1 MioU ‘ Acc.  Prec. Rec. Fl1 MIoU
General Semantic Segmentation Models
U-Net 21} 31.0SM | 0933 0938 0919 0.928 0.844 | 0.933 0938 0919 0.928 0.844 | 0.933 0938 0.919 0.928 0.844
PSPNet (24) 20.95M | 0.947 0949 0935 0.942 0873 | 0.947 0950 0.935 0942 0873 | 0.947 0.950 0.935 0942 0.873
DeeplabV3+ (25} 12.80M | 0.940 0941 0.920 0.936 0.860 | 0.940 0.941 0.932 0936 0860 | 0.940 0.941 0.932 0.936 0.860

Special Designed Sky/Cloud Segmentation Models
CloudSegNet (12} 0.005M | 0.898 0.920 0.876 0.898 0.777 | 0.898 0.920 0.876 0.898 0.777 | 0.898 0.920 0.876 0.898 0.777

SegCloud (26} 19.61IM | 0.941 0953 0.934 0943 0.889 | 0.955 00936 0.960 0.948 0912 | 0.942 0952 0.936 0.944 0.891
UCloudNet (27} - 0.940 0.920 0.940 0.930 - 0.960 0.950 0.950 0.950 - 0.940 0.920 0.940 0.930 -

DDUNet (28} 0.33M | 0.953 0.953 - - 0.882 | 0.954 0.951 - - 0.900 | 0.953 0.952 - - 0.884
CloudU-Net (22} 8.64M | 0953 0.949 0.955 0.948 0.885 | 0.953 0.949 0.947 0948 0.885 | 0.953 0.949 0.947 0948 0.885

CloudU-NetV2 23} | 17.48M | 0.958 0955 0.952 0.953 0.895 | 0.958 0.955 0.952 0.953 0.895 | 0.958 0.955 0.952 0.953 0.900
MA-SegCloud (29} 14.63M | 0969 0971 0.970 0.970 0.940 | 0.969 0.960 0.970 0.965 0.940 | 0.969 0.970 0.970 0.970 0.940

SCANet-lite 0.09M | 0944 0936 0.944 0940 0.865 | 0.944 0.936 0.944 0940 0.865 | 0.944 0.936 0.944 0940 0.865
SCANet 249M | 0961 0.955 0.958 0.957 0901 | 0.961 0.955 0.958 0.957 0902 | 0.961 0.955 0.958 0.957 0.902
SCANet-large 420M | 0970 0971 0960 0.966 0.923 | 0.970 0.971 0960 0.966 0.923 | 0.970 0.971 0.960 0.966 0.923

p— p— Table 2: Inference latency and FPS of SCANet configura-
Methods | oo Laency FPS Laency  tions on an NVIDIA Tesla V100-SXM2 16GB GPU. Mod-
SCANetlite | 750 13ms 1390 o7ms €IS were deployed using TensorRT with FP32 and FP16 pre-
SCANet [465 2ims 1124 08ms cision. Inference latency is measured as the average pro-
SCANetlarge | 299 33ms 392 26ms  cegging time per image over 1000 inferences.

3.4 ABLATION STUDY

To assess our proposed modules, backbone networks, loss functions, and pre-training strategies,
we conduct an ablation study shown in Table [3] The baseline U-Net with inverted residual blocks
has 0.32M parameters, achieving 92.7% accuracy and 83.2% MIoU with BCE loss. Replacing its
backbone with MobileNetV2-lite and adding SCAM (without the Right Branch) boosts accuracy to
93.6% (No. 2) with only 0.09M parameters. The complete SCAM (No. 3) further improves per-
formance, while SWPT provides minor gains. BCE+IOU loss surpasses IOU-only in accuracy and
MIoU. Finally, we evaluate MobileNetV2 and EfficientNet-BO with BCE+IOU loss. To complement
quantitative results, Fig.[9)in Appendix[A.6|provides visualizations of eight key experiments (No. 1,
2,3,4,5,6,8, 10), alongside PR and F-Measure curves in Fig. [§| within Appendix [A.6]

Table 3: Ablation study on different module compositions, loss functions, backbone networks, and
pre-training strategies. SWPT indicates SWINySEG-based pre-training and INPT is ImageNet-
based pre-training. We build a light-weight U-Net with 0.32M parameters as the baseline model.

SCAM Configs Loss Functions | Pre-training SWINySEG
No. Backbone #Params .

L Branch R Branch | BCE 10U SWPT INPT Accuracy Precision Recall F-score MloU
1 baseline X X 4 X X X 0.32M 0.927 0.934 0910 0922 0832
2 | MobileNetV2-lite 4 X v X X X 0.09M 0.936 0.940 0925 0932 0850
3 | MobileNetV2-lite v 4 4 X X X 0.09M ‘ 0.943 0.944 0932 0938 0.863
4 | MobileNetV2-lite 4 4 4 X 4 X 0.09M 0.944 0.943 0933 0938 0.863
5 | MobileNetV2-lite v v X v v X 0.09M ‘ 0.940 0.941 0934 0938 0.856
6 | MobileNetV2-lite v v v v v X 0.09M 0.944 0.936 0.944  0.940  0.865
7 MobileNetV2 4 4 4 X X v 2.49M ‘ 0.960 0.958 0.951 0.955  0.898
8 MobileNetV2 4 4 4 4 X 4 2.49M 0.961 0.955 0.958 0957  0.902
9 EfficientNet-BO v v 4 X X v 4.29M ‘ 0.969 0.972 0956 0964 0919
10 EfficientNet-BO v v v v X v 4.29M 0.970 0.971 0.960  0.966  0.923

4 CONCLUSION

In this paper, we introduce SCANet, a real-time lightweight cloud segmentation model that reduces
parameters by 70.9% while maintaining state-of-the-art performance. The SCANet-large configu-
ration achieves 392 fps in FP16 after TensorRT deployment, whereas SCANet-lite with only 0.09M
reaches 1390 fps. We also propose an efficient pre-training strategy that enhances segmentation
accuracy when ImageNet pre-training is unavailable. Extensive evaluations with prior advanced
methods, confirm SCANet’s superior accuracy and inference speed, exceeding real-time standards.
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A APPENDIX

A.1 RELATED WORK

Earlier methods in cloud segmentation relied heavily on traditional techniques, utilizing color fea-
tures, pre-defined convolution filters, and edge detection operators (305 31; 32). These methods,
however, often struggled with capturing fine-grained details, resulting in sub-par segmentation ac-
curacy. Additionally, their inability to model probabilistic relationships limited their effectiveness
when handling unseen data.

Since deep learning emerged, CNN-based approaches have largely dominated the field of sky/cloud
segmentation research. For instance, Dev et al. (12) developed CloudSegNet, a fully convolutional
network that applies down-sampling and up-sampling processes to extract high-dimensional feature
maps, resulting in segmentation masks with better boundary accuracy. Dev et al. (33) introduced a
multi-label segmentation method, classifying cloud images into thin clouds, thick clouds, and sky
categories, using a U-Net architecture to enhance segmentation precision.

In 2021, Shi et al. (22) presented CloudU-Net, a U-Net-based model that integrates fully connected
conditional random field (CRF) layers for refined post-processing. This model was further improved
into CloudU-NetV2 (23)), which included non-local attention (34) to better capture long-range de-
pendencies, thus improving segmentation accuracy. Nonetheless, adding multiple attention modules
significantly increased computational costs due to additional matrix multiplications. Subsequently,
Zhang et al. (29) introduced MA-SegCloud, which incorporates the convolutional block attention
module (CBAM) (33), squeeze-and-excitation module (SEM) (36), and asymmetric convolution
mechanisms to boost segmentation performance.

Recently, Transformer-based models have been explored to handle long-range dependencies in
sky/cloud segmentation. Liu et al. (37) proposed TransCloudSeg, a hybrid model that merges CNN-
based encoders with Transformer-based feature extractors, utilizing a Heterogeneous Fusion Module
(HFM) to combine outputs from CNN and Transformer branches, thereby demonstrating superior
segmentation results. Additionally, research by Souza et al. (38) and Guo et al. (39) underscores the
benefits of integrating channel attention mechanisms in U-shaped networks. Building on this con-
cept, Buttar er al. (40) extended it by incorporating a U-Net++ (41) architecture with SEM modules,
aiming to boost feature extraction capabilities. Partio et al. (42) proposed CloudCast, a U-Net-based
model for total cloud cover nowcasting. Trained on five years of satellite data, it outperforms nu-
merical weather prediction models and enhances short-term cloud forecasting.

With the growing emphasis on lightweight models, research has increasingly focused on balanc-
ing performance and efficiency, as seen in salient object detection (43 44). In cloud segmentation,
Li et al. proposed UCloudNet (27), which utilizes residual connections within U-Net to stabilize
training in lightweight models. More recently, in 2025, Li ef al. introduced DDUNet (28), incor-
porating weighted dilated convolution and a dynamic weight and bias generator to further enhance
performance in compact architectures. Despite these advances, balancing segmentation accuracy
and computational efficiency remains a persistent challenge. Our proposed SCANet aims to tackle
this issue by leveraging lightweight architectures while maintaining high segmentation performance.

A.2 SCANET - BASIC BUILDING BLOCKS

The fundamental building blocks in computer vision deep learning-based tasks can be categorized
as derivatives of three key modules: straight-forward structures, residual blocks (45)), and inverted
residual blocks (19). Fig. ] (a) illustrates the straight-forward structure, which consists of a 3 x 3
convolution layer, a batch normalization layer, and a ReLU activation. This structure was widely
used in early CNN models. Fig. ] (b) presents the residual block architecture, which introduces a
shortcut connection to facilitate the training of deep CNN networks. In contrast, Fig.{4|(c) depicts the
inverted residual block, which first expands channels using a series of Conv2D-BatchNorm-ReLLU6
layers. The features then pass through another set of similar layers, except that the standard Conv2D
operation is replaced by depth-wise convolution (DWConv in Fig. @), where the number of groups
is set to the number of input channels, significantly reducing parameter count. Finally, a 1 x 1
convolution layer and a batch normalization layer reduce the channels back to the input dimension
before applying element-wise addition.
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Notably, the inverted residual block utilizes ReLU®6 instead of ReLU, as ReLUG6 caps the output
value at 6, preventing excessively large activations. This bounded range helps maintain accuracy
when performing inference in lower precision settings (e.g., FP16 mode).

Table 4: Comparison of basic building blocks widely used
in backbone networks. (a) shows the straightforward struc-
ture with a simple convolutional layer followed by batch
normalization and activation, commonly employed in early
CNN architectures. (b) illustrates the residual block (@3) (c)
demonstrates the inverted-residual block, designed to reduce
parameters and computational cost through channel expan-
sion and depth-wise separable convolutions (19).
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Figure 4: Schematic diagram of SWINySEG-based pre-training. (a) illustrates the positive and
negative sample generation process. (b) indicates the negative samples. (c) is positive samples. (d)
represents the modules involved in pre-training.

A.3 SWINYSEG-BASED PRE-TRAINING (SWPT)

Pre-training is widely used in computer vision tasks to improve performance and accelerate con-
vergence, particularly for complex tasks such as semantic segmentation and object detection. Since
training a model from scratch is computationally expensive, pre-training typically involves training
the backbone on ImageNet before fine-tuning on the target dataset. In SCANet and SCANet-
large, we directly reuse pre-trained weights, as no modifications are made to the backbone. However,
SCANet-lite introduces architectural changes that require pre-training from scratch. Given the high
cost and time required for ImageNet pre-training, we propose an alternative strategy leveraging the
SWINySEG dataset, as illustrated in Fig.[4]

Our approach involves iterating through the SWINySEG dataset, splitting each image into 16
patches, and assigning labels based on the proportion of cloud pixels in each patch:

n
rate = —22 4
n

where n,,¢ represents the number of cloud pixels (label 1), and n denotes the total number of pixels
in the patch. If rate > 0.8, the patch is labeled as a positive sample (cloud); if rate < 0.2, it is
labeled as a negative sample (sky). Patches with rate between 0.2 and 0.8 are ignored to ensure clear
separation between classes. This threshold selection balances the number of positive and negative
samples. This threshold selection helps to mitigate ambiguous regions, thus improving the clarity
of the pre-training labels. By focusing only on well-defined cloud and sky regions, this strategy
enhances the quality of feature representations learned by the model.

During pre-training, we remove all decoders and their connections to the backbone, replacing them
with a fully connected layer to facilitate feature learning.
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A.4 DATASET

We use the Singapore Whole Sky Nychthemeron Image SEGmentation Database (SWINySEG) as
our training dataset, which consists of 6078 day-time and 690 night-time cloud images captured in
Singapore using a calibrated camera. Following Zhang et al. (29), we split the dataset into training
and testing sets with a 9:1 ratio. For evaluation, SCANet is tested on three subsets: day-time im-
ages (augmented SWIMSEG), night-time images (augmented SWINSEG), and the full SWINySEG
dataset. Notably, SCANet is trained only once on the complete SWINySEG dataset.

A.5 IMPLEMENTATION DETAILS

We implement SCANet using PaddlePaddle and conduct training on a single NVIDIA Tesla V100-
SXM2 16GB GPU. The model is trained for 100 epochs with a batch size of 16. We use the Adam
optimizer with an initial learning rate of 1le — 3, 51 = 0.9, 82 = 0.999, and epsilon set to 1le — 8.
The learning rate follows an exponential decay with a decay factor of v = 0.95 after each epoch.
Evaluation on the test set is conducted every 5 epochs to monitor performance.

For data augmentation, we apply only random horizontal and vertical flips after resizing the images
to a resolution of 320 x 320. The augmented images are then scaled to the range [0, 1] and normalized
to have a mean of 0.5 across all three channels.

A.6 ADDITIONAL EXPERIMENT
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Figure 5: Visualization of SCAM output s; (first row) and background mask m; (second row)
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Figure 6: Additional Qualitative Experiments Comparing SCANet-large with State-of-the-Art Ap-
proaches on Daytime (rows 1-2) and Nighttime (rows 3—4) Images from the SWINySEG Dataset
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We assess the effectiveness of the SCAM by visualizing its intermediate outputs, as illustrated in
Fig.[5} The resolutions of the segregated branch output (background mask) from stages 2 to 4 are
40 x 40, 80 x 80, and 160 x 160, while the corresponding stage predictions have resolutions of
80 x 80, 160 x 160, and 320 x 320. At stage 2, the background mask is coarse but already outlines
the general segmentation shape. By stage 3, the mask is refined with sharper boundaries, leveraging
information from the previous stage. In the final stage, the background mask and stage prediction
become well-defined, appearing nearly pure yellow in their combination. This confirms SCAM’s ef-
fectiveness, particularly in enhancing feature utilization through element-wise operations (addition,
multiplication, subtraction) and sigmoid activation—without requiring learnable parameters.
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Figure 7: PR curves (first row) and F-measure curves (second row) on SWINySEG, SWINySEG-
day, and SWINySEG-night dataset

We provide Fig. [6] to complement the qualitative experiment and Fig. [7]to supplement the quan-
titative experiment. In addition, to complement the ablation study, we provide Precision-Recall
(PR) and F-measure curves for SCANet-large and six prior methods, including CloudSegNet (12)),
CloudUNet (22), CloudUNetv2 (23), U-Net (21), PSPNet (24), and DeepLabV3plus (25)), as shown
in Fig.[8] The PR curve illustrates the balance between precision and recall across various thresh-
olds, while the F-measure curve highlights the model’s performance at different thresholds, further
validating SCANet’s effectiveness in cloud segmentation. We also provided Fig. [9] showing visual-
izations of eight essential experiments (No. 1, 2, 3,4, 5, 6, 8, 10).

A.7 DISCUSSION

Ground-based sky/cloud segmentation extracts cloud structures from Earth-based observations, en-
abling cloud distribution visualization and supporting downstream meteorological applications, such
as weather forecasting and anomaly detection. Deep learning significantly enhances accuracy and
efficiency in this task. Early methods, like CloudSegNet (12), employ simple encoder-decoder ar-
chitectures with convolution and max-pooling layers, ensuring computational efficiency but often
falling short in accuracy for advanced meteorological analysis. To enhance performance, many
approaches incorporate larger backbone networks or non-local attention mechanisms (34), which
improve feature extraction but substantially increase computational complexity.

SCANet introduces a new strategy to optimize both accuracy and efficiency by utilizing
lightweight backbone networks while refining decoder design through SCAM. SCAM employs two
branches—Left and Right—to process features with high sky and cloud weights, respectively, lever-
aging prior decoder predictions. Their outputs are then combined to generate the final segmentation.
As demonstrated in ablation experiments (No. 1, No. 2, No. 3) in Table|3|, both branches contribute
significantly to segmentation performance. This design ensures balanced consideration of sky and

11



Under review as a workshop paper at "Tackling Climate Change with Machine Learning", ICLR
2025

Precision
Precision
Precision

SWINyYSEG SWINySEG-day SWINyYSEG-night ]
0.7 0.8 0.9 1.0 .. 0.7 0.8 0.9 1.0 0'6.5 0.6 0.7 0.8 0.9 1.0
Recall Recall Recall
1.0 1.0

o SWINyYSEG SWINyYSEG-day 0' %1  SWINySEG-night
'9.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 09 1.0 0'8.0 0.1 0.2 0.3 04 0.5 06 0.7 0.8 0.9 1.0 '8.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1.0
Thresholds Thresholds Thresholds

Figure 8: Illustration of PR curves (first column) and F-measure curves (second column) of ablation
study in Table. E]on SWINySEG, SWINySEG-day, and SWINySEG-night
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Figure 9: Qualitative visualization of ablation study on day-time and night-time images of SWINy-
SEG dataset; This figure show the prediction maps of experiments No. 1, No. 2, No. 3, No. 4, No.
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cloud regions. Additionally, depth-wise convolution is used to minimize decoder parameters, effec-
tively maintaining high segmentation accuracy while reducing computational cost.

A.8 IMPACT ON CLIMATE CHANGE AND ML-DRIVEN CLIMATE SOLUTIONS COMMUNITY

Our SCANet model represents a significant step forward in applying machine learning to climate
action, particularly in the field of atmospheric monitoring and extreme weather prediction. By im-
proving cloud segmentation accuracy in real time, SCANet enhances climate models, facilitates
solar irradiance forecasting, and supports disaster preparedness, making it a valuable tool for both
climate mitigation and adaptation.

By improving the accuracy of cloud representation in atmospheric and climate models, SCANet
enables a deeper understanding of cloud dynamics and albedo effects, which are essential for pre-
dicting global warming and refining climate simulations. Its ability to process cloud images at 1390
FPS ensures real-time analysis of sky conditions, making it highly effective for monitoring extreme
weather events such as hurricanes, thunderstorms, and heatwaves. Additionally, SCANet plays a
vital role in optimizing renewable energy systems by providing precise cloud segmentation for solar
irradiance forecasting, which supports better integration of photovoltaic energy into power grids and
reduces reliance on fossil fuels.

The model’s lightweight design—requiring as few as 90K parameters in its smallest configu-
ration—makes it highly efficient for deployment on edge devices, enabling cost-effective, real-
time climate monitoring in remote and resource-limited areas. This accessibility facilitates local-
ized monitoring of cloud cover, which complements satellite-based observations by adding high-
resolution, ground-level data. Furthermore, SCANet contributes to disaster preparedness by en-
abling the rapid identification of cloud formations linked to severe weather, assisting in early warn-
ing systems and response planning.

Beyond weather prediction, SCANet contributes to climate science and carbon tracking, supporting
research in cloud-albedo effects, CO, sequestration, and geoengineering interventions. Its scalabil-
ity ensures adaptability across diverse geographies, helping bridge the gap between machine learning
research and real-world climate applications. Its deployment also extends to research on geoengi-
neering and carbon sequestration, where precise monitoring of cloud-albedo effects and atmospheric
COx, levels can inform strategies for mitigating global warming.

By combining high accuracy, real-time efficiency, and deployability, SCANet exemplifies the po-
tential of machine learning to enhance climate change mitigation and adaptation efforts on a global
scale. We hope our work provides meaningful contributions to climate-focused machine learning
research and inspires further exploration of efficient, real-time models to support climate change
mitigation and adaptation efforts.
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